Termination of the given ITRSProblem could successfully be proven:
↳ ITRS
↳ ITRStoIDPProof
ITRS problem:
The following domains are used:
z
The TRS R consists of the following rules:
eval(x, y) → Cond_eval1(>=@z(x, 0@z), x, y, z)
Cond_eval1(TRUE, x, y, z) → eval(-@z(x, 1@z), z)
Cond_eval(TRUE, x, y) → eval(x, -@z(y, 1@z))
eval(x, y) → Cond_eval(>=@z(y, 0@z), x, y)
The set Q consists of the following terms:
eval(x0, x1)
Cond_eval1(TRUE, x0, x1, x2)
Cond_eval(TRUE, x0, x1)
Added dependency pairs
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
I DP problem:
The following domains are used:
z
The ITRS R consists of the following rules:
eval(x, y) → Cond_eval1(>=@z(x, 0@z), x, y, z)
Cond_eval1(TRUE, x, y, z) → eval(-@z(x, 1@z), z)
Cond_eval(TRUE, x, y) → eval(x, -@z(y, 1@z))
eval(x, y) → Cond_eval(>=@z(y, 0@z), x, y)
The integer pair graph contains the following rules and edges:
(0): EVAL(x[0], y[0]) → COND_EVAL1(>=@z(x[0], 0@z), x[0], y[0], z[0])
(1): COND_EVAL(TRUE, x[1], y[1]) → EVAL(x[1], -@z(y[1], 1@z))
(2): EVAL(x[2], y[2]) → COND_EVAL(>=@z(y[2], 0@z), x[2], y[2])
(3): COND_EVAL1(TRUE, x[3], y[3], z[3]) → EVAL(-@z(x[3], 1@z), z[3])
(0) -> (3), if ((z[0] →* z[3])∧(x[0] →* x[3])∧(y[0] →* y[3])∧(>=@z(x[0], 0@z) →* TRUE))
(1) -> (0), if ((-@z(y[1], 1@z) →* y[0])∧(x[1] →* x[0]))
(1) -> (2), if ((-@z(y[1], 1@z) →* y[2])∧(x[1] →* x[2]))
(2) -> (1), if ((x[2] →* x[1])∧(y[2] →* y[1])∧(>=@z(y[2], 0@z) →* TRUE))
(3) -> (0), if ((z[3] →* y[0])∧(-@z(x[3], 1@z) →* x[0]))
(3) -> (2), if ((z[3] →* y[2])∧(-@z(x[3], 1@z) →* x[2]))
The set Q consists of the following terms:
eval(x0, x1)
Cond_eval1(TRUE, x0, x1, x2)
Cond_eval(TRUE, x0, x1)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
I DP problem:
The following domains are used:
z
R is empty.
The integer pair graph contains the following rules and edges:
(0): EVAL(x[0], y[0]) → COND_EVAL1(>=@z(x[0], 0@z), x[0], y[0], z[0])
(1): COND_EVAL(TRUE, x[1], y[1]) → EVAL(x[1], -@z(y[1], 1@z))
(2): EVAL(x[2], y[2]) → COND_EVAL(>=@z(y[2], 0@z), x[2], y[2])
(3): COND_EVAL1(TRUE, x[3], y[3], z[3]) → EVAL(-@z(x[3], 1@z), z[3])
(0) -> (3), if ((z[0] →* z[3])∧(x[0] →* x[3])∧(y[0] →* y[3])∧(>=@z(x[0], 0@z) →* TRUE))
(1) -> (0), if ((-@z(y[1], 1@z) →* y[0])∧(x[1] →* x[0]))
(1) -> (2), if ((-@z(y[1], 1@z) →* y[2])∧(x[1] →* x[2]))
(2) -> (1), if ((x[2] →* x[1])∧(y[2] →* y[1])∧(>=@z(y[2], 0@z) →* TRUE))
(3) -> (0), if ((z[3] →* y[0])∧(-@z(x[3], 1@z) →* x[0]))
(3) -> (2), if ((z[3] →* y[2])∧(-@z(x[3], 1@z) →* x[2]))
The set Q consists of the following terms:
eval(x0, x1)
Cond_eval1(TRUE, x0, x1, x2)
Cond_eval(TRUE, x0, x1)
The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.
For Pair EVAL(x, y) → COND_EVAL1(>=@z(x, 0@z), x, y, z) the following chains were created:
- We consider the chain EVAL(x[0], y[0]) → COND_EVAL1(>=@z(x[0], 0@z), x[0], y[0], z[0]) which results in the following constraint:
(1) (EVAL(x[0], y[0])≥NonInfC∧EVAL(x[0], y[0])≥COND_EVAL1(>=@z(x[0], 0@z), x[0], y[0], z[0])∧(UIncreasing(COND_EVAL1(>=@z(x[0], 0@z), x[0], y[0], z[0])), ≥))
We simplified constraint (1) using rule (POLY_CONSTRAINTS) which results in the following new constraint:
(2) ((UIncreasing(COND_EVAL1(>=@z(x[0], 0@z), x[0], y[0], z[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
We simplified constraint (2) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:
(3) ((UIncreasing(COND_EVAL1(>=@z(x[0], 0@z), x[0], y[0], z[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
We simplified constraint (3) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:
(4) (0 ≥ 0∧0 ≥ 0∧(UIncreasing(COND_EVAL1(>=@z(x[0], 0@z), x[0], y[0], z[0])), ≥))
We simplified constraint (4) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:
(5) (0 ≥ 0∧0 = 0∧(UIncreasing(COND_EVAL1(>=@z(x[0], 0@z), x[0], y[0], z[0])), ≥)∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0)
For Pair COND_EVAL(TRUE, x, y) → EVAL(x, -@z(y, 1@z)) the following chains were created:
- We consider the chain EVAL(x[2], y[2]) → COND_EVAL(>=@z(y[2], 0@z), x[2], y[2]), COND_EVAL(TRUE, x[1], y[1]) → EVAL(x[1], -@z(y[1], 1@z)), EVAL(x[0], y[0]) → COND_EVAL1(>=@z(x[0], 0@z), x[0], y[0], z[0]) which results in the following constraint:
(6) (y[2]=y[1]∧x[2]=x[1]∧x[1]=x[0]∧-@z(y[1], 1@z)=y[0]∧>=@z(y[2], 0@z)=TRUE ⇒ COND_EVAL(TRUE, x[1], y[1])≥NonInfC∧COND_EVAL(TRUE, x[1], y[1])≥EVAL(x[1], -@z(y[1], 1@z))∧(UIncreasing(EVAL(x[1], -@z(y[1], 1@z))), ≥))
We simplified constraint (6) using rules (III), (IV) which results in the following new constraint:
(7) (>=@z(y[2], 0@z)=TRUE ⇒ COND_EVAL(TRUE, x[2], y[2])≥NonInfC∧COND_EVAL(TRUE, x[2], y[2])≥EVAL(x[2], -@z(y[2], 1@z))∧(UIncreasing(EVAL(x[1], -@z(y[1], 1@z))), ≥))
We simplified constraint (7) using rule (POLY_CONSTRAINTS) which results in the following new constraint:
(8) (y[2] ≥ 0 ⇒ (UIncreasing(EVAL(x[1], -@z(y[1], 1@z))), ≥)∧0 ≥ 0∧0 ≥ 0)
We simplified constraint (8) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:
(9) (y[2] ≥ 0 ⇒ (UIncreasing(EVAL(x[1], -@z(y[1], 1@z))), ≥)∧0 ≥ 0∧0 ≥ 0)
We simplified constraint (9) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:
(10) (y[2] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(x[1], -@z(y[1], 1@z))), ≥))
We simplified constraint (10) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:
(11) (y[2] ≥ 0 ⇒ 0 ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL(x[1], -@z(y[1], 1@z))), ≥)∧0 ≥ 0)
- We consider the chain EVAL(x[2], y[2]) → COND_EVAL(>=@z(y[2], 0@z), x[2], y[2]), COND_EVAL(TRUE, x[1], y[1]) → EVAL(x[1], -@z(y[1], 1@z)), EVAL(x[2], y[2]) → COND_EVAL(>=@z(y[2], 0@z), x[2], y[2]) which results in the following constraint:
(12) (y[2]=y[1]∧x[2]=x[1]∧-@z(y[1], 1@z)=y[2]1∧x[1]=x[2]1∧>=@z(y[2], 0@z)=TRUE ⇒ COND_EVAL(TRUE, x[1], y[1])≥NonInfC∧COND_EVAL(TRUE, x[1], y[1])≥EVAL(x[1], -@z(y[1], 1@z))∧(UIncreasing(EVAL(x[1], -@z(y[1], 1@z))), ≥))
We simplified constraint (12) using rules (III), (IV) which results in the following new constraint:
(13) (>=@z(y[2], 0@z)=TRUE ⇒ COND_EVAL(TRUE, x[2], y[2])≥NonInfC∧COND_EVAL(TRUE, x[2], y[2])≥EVAL(x[2], -@z(y[2], 1@z))∧(UIncreasing(EVAL(x[1], -@z(y[1], 1@z))), ≥))
We simplified constraint (13) using rule (POLY_CONSTRAINTS) which results in the following new constraint:
(14) (y[2] ≥ 0 ⇒ (UIncreasing(EVAL(x[1], -@z(y[1], 1@z))), ≥)∧0 ≥ 0∧0 ≥ 0)
We simplified constraint (14) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:
(15) (y[2] ≥ 0 ⇒ (UIncreasing(EVAL(x[1], -@z(y[1], 1@z))), ≥)∧0 ≥ 0∧0 ≥ 0)
We simplified constraint (15) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:
(16) (y[2] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(x[1], -@z(y[1], 1@z))), ≥))
We simplified constraint (16) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:
(17) (y[2] ≥ 0 ⇒ 0 = 0∧0 ≥ 0∧0 ≥ 0∧0 = 0∧(UIncreasing(EVAL(x[1], -@z(y[1], 1@z))), ≥))
For Pair EVAL(x, y) → COND_EVAL(>=@z(y, 0@z), x, y) the following chains were created:
- We consider the chain EVAL(x[2], y[2]) → COND_EVAL(>=@z(y[2], 0@z), x[2], y[2]) which results in the following constraint:
(18) (EVAL(x[2], y[2])≥NonInfC∧EVAL(x[2], y[2])≥COND_EVAL(>=@z(y[2], 0@z), x[2], y[2])∧(UIncreasing(COND_EVAL(>=@z(y[2], 0@z), x[2], y[2])), ≥))
We simplified constraint (18) using rule (POLY_CONSTRAINTS) which results in the following new constraint:
(19) ((UIncreasing(COND_EVAL(>=@z(y[2], 0@z), x[2], y[2])), ≥)∧0 ≥ 0∧0 ≥ 0)
We simplified constraint (19) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:
(20) ((UIncreasing(COND_EVAL(>=@z(y[2], 0@z), x[2], y[2])), ≥)∧0 ≥ 0∧0 ≥ 0)
We simplified constraint (20) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:
(21) (0 ≥ 0∧(UIncreasing(COND_EVAL(>=@z(y[2], 0@z), x[2], y[2])), ≥)∧0 ≥ 0)
We simplified constraint (21) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:
(22) (0 = 0∧(UIncreasing(COND_EVAL(>=@z(y[2], 0@z), x[2], y[2])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 ≥ 0)
For Pair COND_EVAL1(TRUE, x, y, z) → EVAL(-@z(x, 1@z), z) the following chains were created:
- We consider the chain EVAL(x[0], y[0]) → COND_EVAL1(>=@z(x[0], 0@z), x[0], y[0], z[0]), COND_EVAL1(TRUE, x[3], y[3], z[3]) → EVAL(-@z(x[3], 1@z), z[3]), EVAL(x[2], y[2]) → COND_EVAL(>=@z(y[2], 0@z), x[2], y[2]) which results in the following constraint:
(23) (y[0]=y[3]∧z[3]=y[2]∧x[0]=x[3]∧-@z(x[3], 1@z)=x[2]∧>=@z(x[0], 0@z)=TRUE∧z[0]=z[3] ⇒ COND_EVAL1(TRUE, x[3], y[3], z[3])≥NonInfC∧COND_EVAL1(TRUE, x[3], y[3], z[3])≥EVAL(-@z(x[3], 1@z), z[3])∧(UIncreasing(EVAL(-@z(x[3], 1@z), z[3])), ≥))
We simplified constraint (23) using rules (III), (IV) which results in the following new constraint:
(24) (>=@z(x[0], 0@z)=TRUE ⇒ COND_EVAL1(TRUE, x[0], y[0], z[0])≥NonInfC∧COND_EVAL1(TRUE, x[0], y[0], z[0])≥EVAL(-@z(x[0], 1@z), z[0])∧(UIncreasing(EVAL(-@z(x[3], 1@z), z[3])), ≥))
We simplified constraint (24) using rule (POLY_CONSTRAINTS) which results in the following new constraint:
(25) (x[0] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[3], 1@z), z[3])), ≥)∧-1 + (-1)Bound + x[0] ≥ 0∧0 ≥ 0)
We simplified constraint (25) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:
(26) (x[0] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[3], 1@z), z[3])), ≥)∧-1 + (-1)Bound + x[0] ≥ 0∧0 ≥ 0)
We simplified constraint (26) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:
(27) (x[0] ≥ 0 ⇒ 0 ≥ 0∧-1 + (-1)Bound + x[0] ≥ 0∧(UIncreasing(EVAL(-@z(x[3], 1@z), z[3])), ≥))
We simplified constraint (27) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:
(28) (x[0] ≥ 0 ⇒ 0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧-1 + (-1)Bound + x[0] ≥ 0∧0 = 0∧(UIncreasing(EVAL(-@z(x[3], 1@z), z[3])), ≥))
- We consider the chain EVAL(x[0], y[0]) → COND_EVAL1(>=@z(x[0], 0@z), x[0], y[0], z[0]), COND_EVAL1(TRUE, x[3], y[3], z[3]) → EVAL(-@z(x[3], 1@z), z[3]), EVAL(x[0], y[0]) → COND_EVAL1(>=@z(x[0], 0@z), x[0], y[0], z[0]) which results in the following constraint:
(29) (y[0]=y[3]∧-@z(x[3], 1@z)=x[0]1∧x[0]=x[3]∧>=@z(x[0], 0@z)=TRUE∧z[0]=z[3]∧z[3]=y[0]1 ⇒ COND_EVAL1(TRUE, x[3], y[3], z[3])≥NonInfC∧COND_EVAL1(TRUE, x[3], y[3], z[3])≥EVAL(-@z(x[3], 1@z), z[3])∧(UIncreasing(EVAL(-@z(x[3], 1@z), z[3])), ≥))
We simplified constraint (29) using rules (III), (IV) which results in the following new constraint:
(30) (>=@z(x[0], 0@z)=TRUE ⇒ COND_EVAL1(TRUE, x[0], y[0], z[0])≥NonInfC∧COND_EVAL1(TRUE, x[0], y[0], z[0])≥EVAL(-@z(x[0], 1@z), z[0])∧(UIncreasing(EVAL(-@z(x[3], 1@z), z[3])), ≥))
We simplified constraint (30) using rule (POLY_CONSTRAINTS) which results in the following new constraint:
(31) (x[0] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[3], 1@z), z[3])), ≥)∧-1 + (-1)Bound + x[0] ≥ 0∧0 ≥ 0)
We simplified constraint (31) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:
(32) (x[0] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[3], 1@z), z[3])), ≥)∧-1 + (-1)Bound + x[0] ≥ 0∧0 ≥ 0)
We simplified constraint (32) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:
(33) (x[0] ≥ 0 ⇒ 0 ≥ 0∧-1 + (-1)Bound + x[0] ≥ 0∧(UIncreasing(EVAL(-@z(x[3], 1@z), z[3])), ≥))
We simplified constraint (33) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:
(34) (x[0] ≥ 0 ⇒ 0 ≥ 0∧0 = 0∧0 = 0∧-1 + (-1)Bound + x[0] ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL(-@z(x[3], 1@z), z[3])), ≥))
To summarize, we get the following constraints P≥ for the following pairs.
- EVAL(x, y) → COND_EVAL1(>=@z(x, 0@z), x, y, z)
- (0 ≥ 0∧0 = 0∧(UIncreasing(COND_EVAL1(>=@z(x[0], 0@z), x[0], y[0], z[0])), ≥)∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0)
- COND_EVAL(TRUE, x, y) → EVAL(x, -@z(y, 1@z))
- (y[2] ≥ 0 ⇒ 0 ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL(x[1], -@z(y[1], 1@z))), ≥)∧0 ≥ 0)
- (y[2] ≥ 0 ⇒ 0 = 0∧0 ≥ 0∧0 ≥ 0∧0 = 0∧(UIncreasing(EVAL(x[1], -@z(y[1], 1@z))), ≥))
- EVAL(x, y) → COND_EVAL(>=@z(y, 0@z), x, y)
- (0 = 0∧(UIncreasing(COND_EVAL(>=@z(y[2], 0@z), x[2], y[2])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 ≥ 0)
- COND_EVAL1(TRUE, x, y, z) → EVAL(-@z(x, 1@z), z)
- (x[0] ≥ 0 ⇒ 0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧-1 + (-1)Bound + x[0] ≥ 0∧0 = 0∧(UIncreasing(EVAL(-@z(x[3], 1@z), z[3])), ≥))
- (x[0] ≥ 0 ⇒ 0 ≥ 0∧0 = 0∧0 = 0∧-1 + (-1)Bound + x[0] ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL(-@z(x[3], 1@z), z[3])), ≥))
The constraints for P> respective Pbound are constructed from P≥ where we just replace every occurence of "t ≥ s" in P≥ by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:
POL(-@z(x1, x2)) = x1 + (-1)x2
POL(>=@z(x1, x2)) = -1
POL(0@z) = 0
POL(COND_EVAL1(x1, x2, x3, x4)) = -1 + x2
POL(TRUE) = -1
POL(COND_EVAL(x1, x2, x3)) = -1 + x2
POL(EVAL(x1, x2)) = -1 + x1
POL(FALSE) = -1
POL(1@z) = 1
POL(undefined) = -1
The following pairs are in P>:
COND_EVAL1(TRUE, x[3], y[3], z[3]) → EVAL(-@z(x[3], 1@z), z[3])
The following pairs are in Pbound:
COND_EVAL1(TRUE, x[3], y[3], z[3]) → EVAL(-@z(x[3], 1@z), z[3])
The following pairs are in P≥:
EVAL(x[0], y[0]) → COND_EVAL1(>=@z(x[0], 0@z), x[0], y[0], z[0])
COND_EVAL(TRUE, x[1], y[1]) → EVAL(x[1], -@z(y[1], 1@z))
EVAL(x[2], y[2]) → COND_EVAL(>=@z(y[2], 0@z), x[2], y[2])
At least the following rules have been oriented under context sensitive arithmetic replacement:
-@z1 ↔
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
I DP problem:
The following domains are used:
z
R is empty.
The integer pair graph contains the following rules and edges:
(0): EVAL(x[0], y[0]) → COND_EVAL1(>=@z(x[0], 0@z), x[0], y[0], z[0])
(1): COND_EVAL(TRUE, x[1], y[1]) → EVAL(x[1], -@z(y[1], 1@z))
(2): EVAL(x[2], y[2]) → COND_EVAL(>=@z(y[2], 0@z), x[2], y[2])
(1) -> (2), if ((-@z(y[1], 1@z) →* y[2])∧(x[1] →* x[2]))
(1) -> (0), if ((-@z(y[1], 1@z) →* y[0])∧(x[1] →* x[0]))
(2) -> (1), if ((x[2] →* x[1])∧(y[2] →* y[1])∧(>=@z(y[2], 0@z) →* TRUE))
The set Q consists of the following terms:
eval(x0, x1)
Cond_eval1(TRUE, x0, x1, x2)
Cond_eval(TRUE, x0, x1)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
I DP problem:
The following domains are used:
z
R is empty.
The integer pair graph contains the following rules and edges:
(1): COND_EVAL(TRUE, x[1], y[1]) → EVAL(x[1], -@z(y[1], 1@z))
(2): EVAL(x[2], y[2]) → COND_EVAL(>=@z(y[2], 0@z), x[2], y[2])
(1) -> (2), if ((-@z(y[1], 1@z) →* y[2])∧(x[1] →* x[2]))
(2) -> (1), if ((x[2] →* x[1])∧(y[2] →* y[1])∧(>=@z(y[2], 0@z) →* TRUE))
The set Q consists of the following terms:
eval(x0, x1)
Cond_eval1(TRUE, x0, x1, x2)
Cond_eval(TRUE, x0, x1)
The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.
For Pair COND_EVAL(TRUE, x[1], y[1]) → EVAL(x[1], -@z(y[1], 1@z)) the following chains were created:
- We consider the chain EVAL(x[2], y[2]) → COND_EVAL(>=@z(y[2], 0@z), x[2], y[2]), COND_EVAL(TRUE, x[1], y[1]) → EVAL(x[1], -@z(y[1], 1@z)), EVAL(x[2], y[2]) → COND_EVAL(>=@z(y[2], 0@z), x[2], y[2]) which results in the following constraint:
(1) (y[2]=y[1]∧x[2]=x[1]∧-@z(y[1], 1@z)=y[2]1∧x[1]=x[2]1∧>=@z(y[2], 0@z)=TRUE ⇒ COND_EVAL(TRUE, x[1], y[1])≥NonInfC∧COND_EVAL(TRUE, x[1], y[1])≥EVAL(x[1], -@z(y[1], 1@z))∧(UIncreasing(EVAL(x[1], -@z(y[1], 1@z))), ≥))
We simplified constraint (1) using rules (III), (IV) which results in the following new constraint:
(2) (>=@z(y[2], 0@z)=TRUE ⇒ COND_EVAL(TRUE, x[2], y[2])≥NonInfC∧COND_EVAL(TRUE, x[2], y[2])≥EVAL(x[2], -@z(y[2], 1@z))∧(UIncreasing(EVAL(x[1], -@z(y[1], 1@z))), ≥))
We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:
(3) (y[2] ≥ 0 ⇒ (UIncreasing(EVAL(x[1], -@z(y[1], 1@z))), ≥)∧-1 + (-1)Bound + (2)y[2] ≥ 0∧1 ≥ 0)
We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:
(4) (y[2] ≥ 0 ⇒ (UIncreasing(EVAL(x[1], -@z(y[1], 1@z))), ≥)∧-1 + (-1)Bound + (2)y[2] ≥ 0∧1 ≥ 0)
We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:
(5) (y[2] ≥ 0 ⇒ 1 ≥ 0∧(UIncreasing(EVAL(x[1], -@z(y[1], 1@z))), ≥)∧-1 + (-1)Bound + (2)y[2] ≥ 0)
We simplified constraint (5) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:
(6) (y[2] ≥ 0 ⇒ 0 = 0∧-1 + (-1)Bound + (2)y[2] ≥ 0∧1 ≥ 0∧0 = 0∧(UIncreasing(EVAL(x[1], -@z(y[1], 1@z))), ≥))
For Pair EVAL(x[2], y[2]) → COND_EVAL(>=@z(y[2], 0@z), x[2], y[2]) the following chains were created:
- We consider the chain EVAL(x[2], y[2]) → COND_EVAL(>=@z(y[2], 0@z), x[2], y[2]) which results in the following constraint:
(7) (EVAL(x[2], y[2])≥NonInfC∧EVAL(x[2], y[2])≥COND_EVAL(>=@z(y[2], 0@z), x[2], y[2])∧(UIncreasing(COND_EVAL(>=@z(y[2], 0@z), x[2], y[2])), ≥))
We simplified constraint (7) using rule (POLY_CONSTRAINTS) which results in the following new constraint:
(8) ((UIncreasing(COND_EVAL(>=@z(y[2], 0@z), x[2], y[2])), ≥)∧0 ≥ 0∧0 ≥ 0)
We simplified constraint (8) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:
(9) ((UIncreasing(COND_EVAL(>=@z(y[2], 0@z), x[2], y[2])), ≥)∧0 ≥ 0∧0 ≥ 0)
We simplified constraint (9) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:
(10) (0 ≥ 0∧0 ≥ 0∧(UIncreasing(COND_EVAL(>=@z(y[2], 0@z), x[2], y[2])), ≥))
We simplified constraint (10) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:
(11) (0 = 0∧(UIncreasing(COND_EVAL(>=@z(y[2], 0@z), x[2], y[2])), ≥)∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0)
To summarize, we get the following constraints P≥ for the following pairs.
- COND_EVAL(TRUE, x[1], y[1]) → EVAL(x[1], -@z(y[1], 1@z))
- (y[2] ≥ 0 ⇒ 0 = 0∧-1 + (-1)Bound + (2)y[2] ≥ 0∧1 ≥ 0∧0 = 0∧(UIncreasing(EVAL(x[1], -@z(y[1], 1@z))), ≥))
- EVAL(x[2], y[2]) → COND_EVAL(>=@z(y[2], 0@z), x[2], y[2])
- (0 = 0∧(UIncreasing(COND_EVAL(>=@z(y[2], 0@z), x[2], y[2])), ≥)∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0)
The constraints for P> respective Pbound are constructed from P≥ where we just replace every occurence of "t ≥ s" in P≥ by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:
POL(-@z(x1, x2)) = x1 + (-1)x2
POL(>=@z(x1, x2)) = -1
POL(0@z) = 0
POL(TRUE) = -1
POL(EVAL(x1, x2)) = -1 + (2)x2
POL(COND_EVAL(x1, x2, x3)) = -1 + (2)x3
POL(FALSE) = -1
POL(1@z) = 1
POL(undefined) = -1
The following pairs are in P>:
COND_EVAL(TRUE, x[1], y[1]) → EVAL(x[1], -@z(y[1], 1@z))
The following pairs are in Pbound:
COND_EVAL(TRUE, x[1], y[1]) → EVAL(x[1], -@z(y[1], 1@z))
The following pairs are in P≥:
EVAL(x[2], y[2]) → COND_EVAL(>=@z(y[2], 0@z), x[2], y[2])
At least the following rules have been oriented under context sensitive arithmetic replacement:
-@z1 ↔
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
I DP problem:
The following domains are used:
z
R is empty.
The integer pair graph contains the following rules and edges:
(2): EVAL(x[2], y[2]) → COND_EVAL(>=@z(y[2], 0@z), x[2], y[2])
The set Q consists of the following terms:
eval(x0, x1)
Cond_eval1(TRUE, x0, x1, x2)
Cond_eval(TRUE, x0, x1)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.